23-02-2003

27 2002 . 184-», 2008 . 858 « 19) 2 465 « 3 () 30 2012 . 265 1 2013 . 5)

© , 2012

,

II

1			
2			1
3			
4	•	•••••	
5			3
6			10
7			
8			15
9		•	20
10			22
	()	27
	()	28
	()	31
	()	
	()	
		•••••	
	()	
			43
	()	
	()	
			50
	()	
			51
	()	
		() 54
	()	
			60
	()	
			61
	()	
			67
	()	« »
			71
	()	
			80
	()	
			82

THERMAL PERFORMANCE OF THE BUILDINGS

2013-07-01 1 50 ² (),);); (2

3

4

4.1

;

· ,

; ;

; ;

, (, ,

4.2 :

; ;

,

45°); ; ;

; ;

4.3

1.

1 –

	, %,	, 0
12	12 24	24
60	50	40
60 75	50 60	40 50
75	60 75	50 60
_	75	60

4.4

,

2.

2 –

(1)	()
(1)		

```
5
 5.1
 )
                                                           (
     );
  )
                 (
                                       );
  )
                                                 (
      ).
                  ), ) ).
 5.2
                    , R , (^2\cdot ^\circ)/ ,
                      R = R m,
                                                                   (5.1)
R -
 m –
                ,
(5.1)
                                         1.
                   m
                                                         . 10.1
                                                 m
             : m = 0.63 -
                               , m = 0.95 -
               , m = 0.8 -
                               =(t -t)z,
                                                                    (5.2)
```

3 –

								R ,
					(20)/			Λ,
					(2.0)/ ,			
		,	_					
		$b^{'}$,					
			° • /			-	,	
	1		2	3	4	5	6	7
1	,	-	2000	2,1	3,2	2,8	0,3	0,3
			4000	2,8	4,2	3,7	0,45	0,35
		,	6000	3,5	5,2	4,6	0,6	0,4
	,	,	8000	4,2	6,2	5,5	0,7	0,45
			10000	4,9	7,2	6,4	0,75	0,5
			12000	5,6	8,2	7,3	0,8	0,55
			— .	0,00035	0,0005	0,00045	_	0,000025
b)		— .	1,4	2,2	1,9	_	0,25
2		,	2000	1,8	2,4	2,0	0,3	0,3
			4000	2,4	3,2	2,7	0,4	0,35
	,		6000	3,0	4,0	3,4	0,5	0,4
			8000	3,6	4,8	4,1	0,6	0,45
	,		10000	4,2	5,6	4,8	0,7	0,5
			12000	4,8	6,4	5,5	0,8	0,55
				0.0005	0.0004	0.00027	0.00007	0.000007
			_	0,0003	0,0004	0,00035	0,00005	0,000025
b)		_	1,2	1,6	1,3	0,2	0,25

		(² .°)/ ,				
b, b	· , ,			-	,	
1	2	3	4	5	6	7
3	2000	1,4	2,0	1,4	0,25	0,2
	4000	1,8	2,5	1,8	0,3	0,25
*	6000	2,2	3,0	2,2	0,35	0,3
Ψ.	8000	2,6	3,5	2,6	0,4	0,35
	10000	3,0	4,0	3,0	0,45	0,4
	12000	3,4	4,5	3,4	0,5	0,45
	_	0,0002	0,00025	0,0002	0,000025	0,000025
b	_	1,0	1,5	1,0	0,2	0,15

,

 $n_t,$ $n = \frac{t^* - t^*}{} \tag{5.3}$

$$n_t = \frac{t - t}{t - t} \,, \tag{5.3}$$

t, t = t, t =

$$R_{\rm o} = \frac{\left(t - t\right)}{\Delta t \ \alpha},\tag{5.4}$$

 α - , /(2 . $^{\circ}$), 4; Δt - t 5; t - , (5.2);

0,92 131.13330.

R = 0.6R , (5.4).

8°,
, (5.4)

.

4 –

				α , /(2 ·°)
1	, ,	,		8,7
		h	,	
		$h/a \le 0.3$		
2			h/ > 0.3	7,6
3				8,0
4				9,9
		-	α	
	106.13330.			

5 –

					Δ	t, °C,
					,	
1		-	4,0	3,0	2,0	t-t
1	,	, ,	4,0	3,0	2,0	$\iota - \iota$
2	1	,	4,5	4,0	2,5	t-t
	. 1,		,			
3			t-t,	0.8(t - t),	2,5	t-t
			7	6		
4			t-t	0.8(t-t)	2,5	
5			12	12	2,5	t-t
	,	22 / 3)				
	(23 / ³)				
		50 %				
		: t - ,	(5.2);			
	t –	, ,	,	2.1.2.2645,	12 1 005	2.2.4.548,
	60.13330	,	2	.1.2.2043,	12.1.003	2.2.4.340,
		_	-			
	Δt 109.13330.	,				
	109.13330.					

,

.

6 –

		, α , /($^2\cdot$ °)
1	, , , () -	23
2	, , ,	17
3	,	12
4	,	6

5.5 , k ,

	k , $/(^2 \cdot ^\circ)$,			,° · /	
$,V$, 3	1000	3000	5000	8000	12000
150	1,206	0,892	0,708	0,541	0,321
300	0,957	0,708	0,562	0,429	0,326
600	0,759	0,562	0,446	0,341	0,259
1200	0,606	0,449	0,356	0,272	0,207
2500	0,486	0,360	0,286	0,218	0,166
6000	0,391	0,289	0,229	0,175	0,133

2	k , /(² .°),			, ° .	/
V , 3	1000	3000	5000	8000	12000
15 000	0,327	0,242	0,192	0,146	0,111
50 000	0,277	0,205	0,162	0,124	0,094
200 000	0,269	0,182	0,145	0,111	0,084
1		k 74	1	;	
$k = \begin{cases} \frac{4,74}{0,00013 \cdot 100013 \cdot 1000013 \cdot 100013 \cdot 1000013 \cdot 1000013 \cdot 1000013 \cdot 1000013 \cdot 1000013 \cdot 1000013 \cdot 1000010000$					
	$k = \frac{8}{}$,5			(5.6)
2	k ,		(5.5),	,	
(5.6),		k ,		(5.6).	

5.6 , k , $/(3.^{\circ})$ 5.7 , k , $/(3.^{\circ})$ 5.7 , ...

(5.4).

.

t, $^{\circ}$,

	:		,	,	,
_	- ()		, - 55 %;	, -	, ,
50 %.	-60 %;	65 %;	- 55 %; (- 75 %;) -
6 6.1				21 °	
	-	,	, ,) A_{τ} , °C, , ,	, , -
()	,	,	, ,	-
,				$A_{ au}$, $^{\circ}$,	
		$A_{\tau} = 2, 5 - 0$,1(t-21),		(6.1)
<i>t</i> – 6.2	131.13330. A_{τ} , $^{\circ}$,			, °,	
	ί,,,,	$A_{\tau} = 0$	$\frac{A_{_t}}{v}$,		(6.2)
A_{t} v	_	6.3;			, ,
	6.4.	A_{t}		,	

6.3

$$A_{t} = 0.5A_{t} + \frac{\rho(I_{\text{max}} - I)}{\alpha}, \qquad (6.3)$$

 A_{t} -

131.13330;

ρ –

 I_{max}, I –

131.13330

α –

, $/(^2 \cdot ^\circ)$, (6.9).

6.4

$$v = 0,9e^{\frac{D}{\sqrt{2}}} \frac{\left(s_1 + \alpha\right)\left(s_2 + Y_1\right)...\left(s_n + Y_{n-1}\right)\left(\alpha + Y_n\right)}{\left(s_1 + Y_1\right)\left(s_2 + Y_2\right)...\left(s_n + Y_n\right)\alpha},$$
(6.4)

= 2,718-

D-6.5.

 $s_1, s_2, ..., s_n$

, $/(^2 \cdot ^\circ);$

 $Y_1, Y_2, ..., Y_{n-1}, Y_n -$, $/(^2 \cdot ^\circ)$,

6.5;

(5.4);

(6.3). (6.4)

26253.

D6.5

 D_i

$$D_i = R_i s_i, (6.5)$$

 R_i - 2.0 / , i-

$$R_i = \frac{\delta_i}{\lambda_i} , \qquad (6.6)$$

```
50.13330.2012
```

```
\delta_i, – i-
    \lambda_i – /( · ° ).
                                                                                   i-
       1
       2
                                                                                          D \ge 4,
       6.6
                         D
                                                              (6.5).
                                                                                         Y, /(^2 \cdot ^\circ),
                            D \geq 1
                                                                                   Y
D < 1
        )
                                                                                                           (6.7)
        ) i-
                                                                                                           (6.8)
     R_1, R_i –
                                                 , 2.0 / ,
                                                                                                   (6.6);
      s_1, s_i
                         , /(^{2} \cdot ^{\circ}); (5.4);
Y_1, Y_i, Y_{i-1} —
                                                                                         , /(^2 \cdot ^\circ).
                         , i- (i-1)-
       6.7
                          \alpha , /( ^2 \cdot ^{\circ} ),
                                           \alpha = 1,16\left(5+10\sqrt{v}\right),\,
                                                                                                           (6.9)
     v –
                                                                                           131.13330,
                                    16 %
               1 / .
       6.8
                                                                               21°
              ),
```

,

β , 8.

8 –

	β
1 , (, ,	0,2
, , , - , , - ()	
2 ,	0,4

R , ($^2\cdot$ ·)/ ,

 $R = \Delta p/G , \qquad (7.1)$

 Δ – , , , 7.2; G – , $/(^2 \cdot),$ 7.3.

/(²·), 7.3.

 Δ , ,

 $\Delta p = 0.55H(\gamma - \gamma) + 0.03\gamma v^{2}, \tag{7.2}$

 $\gamma = 3463/(273+t) \,, \tag{7.3}$

: $(\gamma) - (12.1.005, 30494 2.1.2.2645;$ $(\gamma) - (0.92 131.13330;$

					G , $/(^2\cdot)$,
[,		,	,	0,5
2	,				1,0
3			: :		
)					0,5*
)					1,0*
4					1,5
5	,				7,0
6		,			6,0
			;		
7		,			5,0
3,					8,0
9					10,0
10					6,0

7.4 R_u

$$R_{u} = R_{u1} + R_{u2} + ... + R_{un}, \qquad (7.4)$$

$$R_{1}, R_{2}, ..., R_{n} - , (^{2} \cdot . \cdot)/ .$$

$$R_{u}$$

$$R_{u}$$

$$R_{u} + (^{2} \cdot . \cdot)/ .$$

 $R = (1/G) \cdot (\Delta p / \Delta p_0)^{\frac{2}{3}},$ G - , $\Delta - ,$ (7.1); (7.2);

 $\Delta_0 = 10$ - R_u . 7.6 R, $(^{2}\cdot)/$, $R = (1/G) \cdot (\Delta p/\Delta p_0)^n,$ (7.6), /($^{2}\cdot$), G – $\Delta_0 = 10$, n – 7.7 $R \geq R$, 7.1. R < R7.1. 7.8 8 8.1). R, $(^2 \cdot \cdot)/$, 8.5) R_1 , $(^2 \cdot \cdot)/$ ()), $R_1 = \frac{(e - E)R}{E - e};$ (8.1) R_2 , $(^2 \cdot \cdot)/$ () $R_2 = \frac{0.0024z_0(e - E_0)}{\rho_w \delta_w \Delta w + \eta},$

(8.2)

```
50.13330.2012
```

 $e = (\varphi / 100)E,$ (8.3)E – 8.6; t, , %, φ – 5.7; $R_{,}$ – 8.7; e – 131.13330; Z_0 – 131.13330; 0 — 8.6 8.8; Z_0 ρ_w – δ_w -2/3 () Δw – 10. Z_0 , , $\delta_w \Delta w$ $\delta_{w1}\Delta w_1 + \delta_{w2}\Delta w_2$, (8.2) δ_{w1} δ_{w2} 10 – Uw

						* \(\Delta w \), \(\% \)
1						1,5
2						2,0
3				(,	5
		,	,)		
4		(,	,	.)	6
5						1,5
6						7,5
7						3
8						25
9	-					50

						* \Delta w, \%
10				,	,	3
11		,	-			2
	*	,				
	97%	,				,
			Δw , %	,		
		2481	Δw 6.		Δw .	

 $E = (E_1 z_1 + E_2 z_2 + E_3 z_3)/12,$ $E = (E_1 z_1 + E_2 z_2 + E_3 z_3)/1$

5 5°; η- ,

 $\eta = \frac{0,0024(E_0 - e_{,})z_0}{R_{,}},$ (8.5)

 $e_{,}$ –

131.13330.

_ 3

_

R, ($^2 \cdot \cdot$)/ ,

, R , ($^2\cdot$ ·)/ ,

```
50.13330.2012
```

```
R = 0.0012(-e), ),
                                                                                                                         (8.6)
                                                   (8.1) (8.5).
, e ,
                                                                                                      (
 8.3
                                                                                                                         )
                                                                                                          8.7.
 8.4
8.5
8.5.1
                                                                                                    (8.7)
                       f_i(t_{\perp}),
                                  f_i(t_{\perp}) = 5330 \cdot \frac{R_{\perp}(t_{\perp}-t_{\perp})}{R_{\perp}(t_{\perp}-t_{\perp})} \cdot \frac{\mu_i}{\lambda_i},
                                                                                                                         (8.7)
                                                            8.7;
                                                ,(^{2}\cdot^{\circ})/
                                                                                                             ( .6), ( .7);
                                            (8.1);
                                            (8.5);
                                          , /( \cdot · · ), f_i(t_{\cdot \cdot})
_{i}, \mu_{i} -
8.5.2
 8.5.3
                                                                                                                    ).
 8.5.4
                                                                   t .
                                                                                                                       -x.
                                                                                                    ).
 8.5.5
                                                                      t .
```

,

t ,

•

11- f(t.)

t, °	$f(t)$, $(\circ)^2/$	t.,°	$f(t)$, $(\circ)^2/$	t.,°	$f(t)$, $(\circ)^2/$	t.,°	$f(t)$, $(\circ)^2/$
-25	712,5	-14	312,3	-3	146,9	8	73,51
-24	658,9	-13	290,8	-2	137,6	9	69,22
-23	609,8	-12	270,9	-1	128,9	10	65,22
-22	564,7	-11	252,5	0	120,9	11	61,47
-21	523,2	-10	235,5	1	113,4	12	57,96
-20	485,2	- 9	219,8	2	106,5	13	54,68
-19	450,1	-8	205,2	3	100,0	14	51,6
-18	417,9	– 7	191,8	4	93,91	15	48,72
-17	388,2	-6	179,2	5	88,27	16	46,02
-16	360,8	-5	167,6	6	83,01	17	43,48
-15	335,6	-4	156,9	7	78,1	18	41,11

 $2/3\,R_{\rm o} \quad) \qquad \qquad , \qquad \qquad ,$

$$\frac{\mu}{}$$
 > 2,

 μ – , /($^2\cdot^\circ$), , . . .

 $E, \quad ,$

 $E = 1,84 \cdot 10^{11} \exp\left(-\frac{5330}{273+t}\right). \tag{8.8}$

8.7 R_{i} , $2 \cdot \cdot /$,

$$R_i = \frac{\delta_i}{\mu_i},\tag{8.9}$$

 $\delta_i -$, ; $\mu_i -$

, /(· ·).

```
R , ( ^2\cdot · )/ ,
               (
                                     R_{,} = \sum R_{i}.
                                                                                                     (8.9*)
                                           R,,(^{2}···)/,
  1
  2
                                                                         R
                                                         R
  3
                        t_x, \circ , x, ,
  8.8
                                 t_{x} = t - \frac{t - t}{R} R_{x},
                                                                                                     (8.10)
t t - R_x -
                                                                      x, ^2. ^\circ / ,
                                     R_x = \frac{1}{\alpha} + \sum_{i=1}^{\infty} \frac{\delta_i}{\lambda_i}.
                                                                                                     (8.11)
  9
  9.1
                               (
                                                     Y , /(^2\cdot^\circ),
        Y ,
                                                12.
```

12 – **Y**

9.2
$$/(\stackrel{2}{\cdot}{}^{\circ}) \qquad \qquad : \qquad \qquad : \qquad \qquad)$$

$$D_1 = R_1 s_1 \geq 0.5, \qquad \qquad ($$

$$Y = 2s_1; (9.1)$$

)
$$n$$
 $(n \ge 1)$
$$D_1 + D_2 + \dots + D_n < 0.5,$$
 $(n + 1)$
$$D_1 + D_2 + \dots + D_{n+1} \ge 0.5,$$

, n- 1- :

$$Y_n = \left(2R_n s_n^2 + s_{n+1}\right) / \left(0.5 + R_n s_{n+1}\right); \tag{9.2}$$

i- (i = n-1; n-2; ...; 1) –

$$Y_{i} = \left(4R_{i}s_{i}^{2} + Y_{i+1}\right) / \left(1 + R_{i}Y_{i+1}\right). \tag{9.3}$$

```
Y
                                                             Y_1.
                    (9.1) - (9.3)
                                                             1- , 2- , ..., (n+1)-
D_1, D_2, ..., D_{n+1}
                       D_1 = R_1 s_1; \ D_2 = R_2 s_2; \dots; D_n = R_n s_n,
                                                                                             (9.4)
                                           , ( ^2 \cdot ^\circ )/ ,
R_1, R_2, \ldots, R_n
                        R_1 = \frac{\delta_1}{\lambda_1}; R_2 = \frac{\delta_2}{\lambda_2}; ...; R_n = \frac{\delta_n}{\lambda_n};
                                                                                             (9.5)
s_1, s_i, s_n, s_{n+1} - 2- , \dots, n- , (n+1)-
                                                                    , /( ²·° ),
                                            1, 2, ..., n -
 1, 2, ..., n-
                                       Y
                                                   Y ,
                                                                          ; Y > Y,
                                            Y \leq Y.
      9.3
                                                         23°;
       )
                                (
                                             III);
       )
                                                 (
       )
                 . .).
      9.4
                                                                             106.13330.
      10
      10.1
                                                         1 3
```

$$1^{\circ}$$
 , q , $/(^{3} \cdot ^{\circ})$.

,
$$q$$
 , $/($ $^3.\circ$ $),$

.

$$q$$
 , /(3 . $^\circ$):

$$q \leq q \quad , \tag{10.1}$$

$$q$$
 - , /($^3\cdot ^\circ$), 13 14.

$$, q$$
 , $/(^{3.\circ})$

	, 2	1	2	3	4
50		0,579	_	_	_
100		0,517	0,558	_	_
150		0,455	0,496	0,538	_
250		0,414	0,434	0,455	0,476
400		0,372	0,372	0,393	0,414
500		0,359	0,359	0,359	0,372
1000		0,336	0,336	0,336	0,336

,
$$q$$
 , /($^3\cdot^\circ$)

			1	2	3	4, 5	6, 7	8, 9	10, 11	12
1			0,455	0,414	0,372	0,359	0,336	0,319	0,301	0,290
		,								
	,									
2		,	0,487	0,440	0,417	0,371	0,359	0,342	0,324	0,311
	3–6									

		1	2	3	4, 5	6, 7	8, 9	10, 11	12
3		0,394	0,382	0,371	0,359	0,348	0,336	0,324	0,311
	, -								
4		0,521	0,521	0,521	_	_	_	_	_
	,								
5		0,266	0,255	0,243	0,232	0,232		_	
	,								
	-								
	,								
6	,	0,417	0,394	0,382	0,313	0,278	0,255	0,232	0,232
	()	2,11,		2,202	-,	2,270	2,200	,	5,202
		_	,			= 80	00°·	,	
q	-	5 %.							

10.2

) n₅₀, 31167

50 $n_{50} \le 4^{-1}$; $n_{50} \le 2^{-1}$.

10.3

(15) %

)

15 –

	,
	, %
++	-60
+	-50 -60
	-40 -50
B+	-30 -40
В	-15 -30
C+	-5 -15
C C–	+5 -5
C–	+ 15 + 5

15

	()		,
		, %	
D	+ 15,1 + 50		
Е	+50		,

· ,

, 10.5 « » « »

:

,

10.6

10.7

, , ,

10.8

10.9 ,

•

(«B »)

· -

,

>>

	()			
12.1.005-88					
8736–93 9757–90	,	٠			
10832-2009					
12865–67					
24816–81		•			
25820-2000					
26253-84					
30494–96					
31167–2009					
51263-99					
20.13330.2011 «	2.01.07-85*			»	
60.13330.2012 »	« 41-0	01-2003		,	
106.13330.2012 «	2.10.03-8 »	4	,		
109.13330.2012 «	2.11.02-87		»		

2.2.4.548-96

2.1.2.2645-10

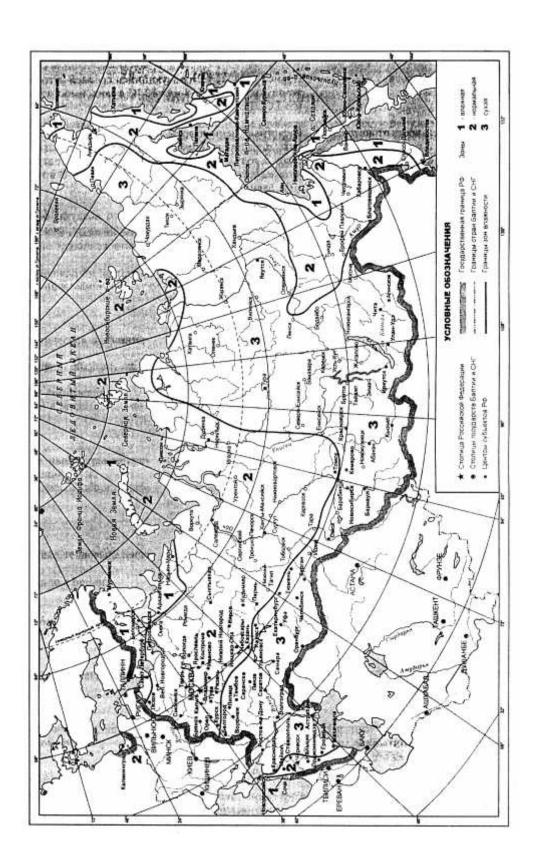
31-05-2003

23-01-99*

118.13330-2012 «

131.13330.2012 «

	()	
.1	; (,	
.2	; ;	
.3	, ,	
.4	, %	. ,
.5	· ,	,
30494).	,	:
.7	(30494).	80 9
.8	, :	••,
.9	•	:
.10	· • ,	(
.11	() : , (30494).	, 10 8°


(

	.12		: 8°	, 10°			
(.13	494).	,		:		
	.14	8°, 10°	,	,	·		
	.15	$R_{\rm o}$, ($^2 \cdot ^{\circ}$))/ :		,		
(² ·	.16 °)/:		,	,			$R_{\rm o}$
	.17				,	r:	
(.18):	,			,
	.19	j , /(²	·°):		,		•
	.20	, /°:			,		
	.21		٠				/(² ·°)
	.22	, /(1 3.°):				
	.23		,	:			
	.24	:	,	,			

50.13330.2012						
.25			:	,		
	,	,		,		
2.5		•		,		
.26	:			,	,	
	,		,			
		().				
.27	,).			:	
	,					
.28			:			
	•				_	
.29					:	
20						
.30			:			
.31				:		
					,	
	·		,	,		
.32	•					
:			,	,		
.33 .34		:		•		
.34						
	,					
.35			:			
.36	-		•	:		
.37				:		•
				·	,	

.38

()


```
50.13330.2012
```

) .1 , q , $/(^3.^\circ)$ $q = \begin{bmatrix} k & +k & -(k & +k &)v\zeta \end{bmatrix} (1-\xi)\beta_h,$ (.1) , $/(3\cdot)$, k – , /(³·°); , /(³·°); /(³·°); =0,1; β_h – $\beta_h = 1,13;$ $\beta_h = 1,11;$ $\beta_h = 1,07;$ $\beta_h = 1,05.$ ν – ; -1000); v = 0,7 + 0,000025(ζ- $\zeta = 1.0 \zeta = 0.95 \zeta = 0.9 -$

 $\zeta = 0.85 -$:

```
\zeta = 0.7 -
        \zeta = 0.5 -
                                                                                      ;
, k , /(^3 \cdot ^\circ),
         .2
                                      k = 0,28cn \beta_{v} \rho \quad (1-k),
                                                                                                                     ( .2)
                                                      , 1 /( ·° );
    \beta_{\nu} –
    \beta_{v} = 0.85;
                                                                                                    , / 3
                                                \rho = 353/[273+t],
                                                                                                                     (.3)
                                          (5.2), °.
                                    .3;
                                                                      , k ,
   :
                                                                     n_{50}, ^{-1},
                                                                                                                    50
n_{50} \le 2^{-1};
                                                                                                            50
                                                                              31167.
         .3
                 n = \left[ \begin{pmatrix} L & n \end{pmatrix} / 168 + \begin{pmatrix} G & n \end{pmatrix} / \begin{pmatrix} 168\rho \end{pmatrix} \right] / \left(\beta_{\nu}V\right),
                                                                                                                     ( .4)
     L –
                                                                                                 , <sup>3</sup>/ , 20 <sup>2</sup>
                        )
                                                    -3A;
- 0,35·h ( ),
                                                                                                      30 ; –
                        )
                        )
                                                                                                              : - 4A ;
                                          -5A;
                                                                                                            7A;
```

```
50.13330.2012
```

```
-10A;
                                                              117.13330
  h –
n
168 – G –
                            /:
                                                                                                          .4;
                                         0.1 \ _{\nu}V , 
 -0.2 \ _{\nu}V ;
                                                                                            -0.15 vV,
                                                                                      168
(168 – n
n
 V –
                                       ( .2) ( .3);
  \beta_{\nu} –
                                      ( .2).
                                                 ( .2)
    .4
            G = (A /R) (\Delta p /10)^{2/3} + (A /R) (\Delta p /10)^{1/2},
                                                                                                       ( .5)
\boldsymbol{A}
      A –
```

```
R_{,} R_{,} -
                                                                                      ,(^{2}\cdot)/;
 \Delta p \Delta p –
                                                (7.2)
0,55 0,28
                                     (7.3)
                                     (5.2).
                                                        -0.15 vV,
\begin{array}{ccc} 0,1 & _{\nu}V & , \\ V & - \end{array}
                                                             ( )
                                                                                                       -0.6 \ _{v}V ,
                                                       -0.45 vV,
0,3 V V V
                                                                                               , k , /(^3 \cdot ^\circ),
         .5
                                    k = \frac{q \quad A}{V \quad \left(t \quad -t \quad \right)},
                                                                                                                 ( .6)
                                                                   1 2
     q –
                                                                             ( ), / <sup>2</sup>,
                    )
                                                q = 17 / 2;
                                                                                                       45 <sup>2</sup>
                                                        q = 10 / ^2;
                                                                           17 \quad 10 \quad / \quad {}^{2};
                                                                                                       (90 / ),
                                                                        (
                                   (10 / ^2), (5.2), ^{\circ};
                                   .3.
k , /(^3 \cdot ^\circ),
                                    k = \frac{11,6Q}{(V)},
                                                                                                                 ( .7)
                   Q
                                                                         , / ,
```

```
Q = \tau_1 \quad \tau_2 \quad \left( A_{1}I_1 + A_{2}I_2 + A_{3}I_3 + A_{4}I_4 \right) + \tau_1 \quad \tau_2 \quad A \quad I \quad , \tag{.8}
       	au_1 , 	au_1 –
                                                                                        45° –
        \tau_2 , \tau_2 -
                                                                     (
1, 2, 3, A 4 –
             A -
      I_1, I_2, I_3, I_4 –
                           , /( <sup>2</sup>· ),
    .7
                    q, \qquad \cdot /(^3 \cdot ) \qquad , \qquad \cdot /(^2 \cdot )
                   q = 0.024  q , · /( ^{3} · ),
                                                                                            ( .9)
                  q = 0.024 q h, \cdot /(^2 \cdot ),
                                                                                            ( .9 )
        , .1 .6;
                                    , , V/A ;
   h-
```

36

Q , \cdot / ,

$$Q = 0.024 V q . (10)$$

Q , \cdot / ,

$$Q = 0.024 V (k + k), (.11)$$

$$V - , (5.2);$$
 $V - , .3;$
 $k, k - , .1.$

			()				
.1								
								,
()				,				
	,							
.2								
. 120								
+ 12 °						,		
.3		«						
.4					».			
.5		« »,					15.	
							-	
,		,			,		20 %	
		-						
.6								,
.7							•	_
	,					;	,	
		(•					
		(,)		,	
-			,					,
.8		•						
		1						
	(,	,)						
1								

,	

2

1	t	°C	
2	t	°C	
3	Z	/	
4 -		°C· /	
5	t	°C	
6	t	°C	
7	t	°C	

		3			
8				A , 2	
9				A , 2	
10		(A , 2	
)				
11				V , 3	
12				f	
13				K	
14				A , 2	
			,	,	
	:				
				A	
	()	\boldsymbol{A}	
				$A_{.1}$	
				$A_{.2}$	
	_			A .3	
				A .4	
		()	A	
	()			
				\boldsymbol{A}	
				A	

« » ()	A A
	A 2
()	A 3

	4			
15	, :	R , 2.∘ /		
	()	$R_{,}$		
		$R_{,-1}$		
		$R_{,2}$		
		$R_{,3}$		
	-	$R_{,4}$		
		$R_{,}$		
()	$R_{,}$		
) ()	$R_{,}$		
		$R_{,}$		
(« »)	$R_{,}$		
		$R_{, 1}$		
()			
		$R_{,2}$		
()	$R_{,3}$		

16	<i>K</i> , /(· °C)	
17	n , $^{-1}$	
18	q , / 2	
19	, / .	

20	k , /(3 · °)
21	k , /(³ ·°)
22	k , /(3 · °)
23	k , /(3·°)

24		
25 ,		
26	k	
26 27 ,	, , ,	
27 ,		
28	h	

8

29	q , /(³ .°)	
30	q , /(³.°)	
31		
32		

33	q	· /(3 ·) · /(2 ·)	
34	Q	· /()	
35	Q	· /()	

.1

, $R_{\rm o} \ , (\ ^2 \cdot ^\circ \)/ \quad ,$

 $R = \frac{1}{\frac{1}{R_o} + \sum l_j \Psi_j + \sum n_k \chi_k} = \frac{1}{\sum a_i U_i + \sum l_j \Psi_j + \sum n_k \chi_k},$ (.1)

 $R_{\rm o}$ –

 $l_{j}-$, $^{2}\cdot$ $^{\circ}$ / ; l_{j}

 $\Psi_j - (\cdot^{\circ});$ $n_k - 1^2$

k $a_i - a_i - 1$

 $a_i = \frac{A_i}{\sum A_i},$ (.2)

 $A_i - U_i -$

/(²·°). i-),

 $U_i = \frac{1}{R_{\mathrm{o},i}}.$ (.3)

.2 , r,

$$r = \frac{R_{\rm o}}{R_{\rm o}}.$$
 (.4)

 $R_{\rm o}$

$$R_{\rm o} = \frac{\sum A_i}{\sum \frac{A_i}{R_{\rm o,i}}} = \frac{1}{\sum a_i U_i},$$
 (.5)

 $R_{\mathrm{o},i}$ –

$$R_{\rm o} = \frac{1}{\alpha} + \sum_{s} R_{s} + \frac{1}{\alpha}$$
, (.6)

 α –

 α - /($^2\cdot$ °),

6;
$$, (\stackrel{2.\circ}{\cdot})/ , .1,$$

 $R_s = \frac{\delta_s}{\lambda} \,, \tag{.7}$

s – , ;

.3

t .

$$\Psi_j = \frac{\Delta Q_j^L}{t - t},\tag{.8}$$

t- t- t- $, \circ ;$

j- , 1 . , / ,

$$\Delta Q_j^L = Q_j^L - Q_{j,1} - Q_{j,2}, \tag{.9}$$

 Q_j^L - $Q_{j,1}, Q_{j,2}$ – j- , / ,

 $Q_{j,1} = \frac{t - t}{R_{,j,1} \cdot 1} S_{j,1};$ $Q_{j,2} = \frac{t - t}{R_{,j,2} \cdot 1} S_{j,2};$ (.10)

 $S_{j,1}+S_{j,2}$, $S_{j,1}, S_{j,2}$ –

j —

 $S_{j,1} + S_{j,2}$ \vdots $j - , /(\cdot ^{\circ}).$.4 k-

$$\chi_k = \frac{\Delta Q_k^K}{t - t},\tag{11}$$

 ΔQ_k^K – k-

$$\Delta Q_k^K = Q_k - \tilde{Q}_k \,, \tag{12}$$

 Q_k k-

 \tilde{Q}_k –

$$Q = \alpha S (t - \tau). \tag{.13}$$

$$Q = \alpha S (t - \tau), \qquad (.14)$$

t, t - \circ ; τ , τ - \cdot , \circ ; \cdot , \cdot ,

.1

				, 2.0 /
,				
0,01	0,13	0,15	0,14	0,15
0,02	0,13	0,15	0,15	0,19
0,03	0,14	0,16	0,16	0,21
0,05	0,14	0,17	0,17	0,22
0,1	0,15	0,18	0,18	0,23
0,15	0,15	0,18	0,19	0,24
0,2-0,3	0,15	0,19	0,19	0,24
	_		1	

.2

	*			,	
					,
					%
		$a_1 = {}^2/{}^2$	$U_1 = /(^2 \cdot ^\circ)$	$U_1 a_1 = /(2.0)$	
				•••	
		$a_i = 2/2$	$U_i = /(^2 \cdot ^\circ)$	$U_i a_i = /(2.0)$	
		$l_1 = /^2$	1= /(·°)	$_1 l_1 = /(^2 \cdot ^\circ)$	
				•••	
		$l_j = /^2$	$_{j}=$ /(\cdot °)	$_{j}$ l_{j} = $/(^{2}\cdot^{\circ})$	
		$n_1 = 1/^{-2}$	1 = /°	$_{1}n_{1}=$ /($^{2}\cdot$ $^{\circ}$)	
•••		•••	•••	•••	
		$n_k = 1/^{-2}$	_k = /°	$_{k}n_{k}=$ /($^{2}\cdot$ $^{\circ}$)	
				$1/R = /(^2 \cdot ^\circ)$	100 %
*					
		-			

7.
$$R_{+}(2.0)$$
, $R_{+}(2.0)$

•

(

.1 , k , $/(^3 \cdot ^\circ)$,

$$k = \frac{1}{V} \sum_{i} \left(n_{t,i} \frac{A_{,i}}{R_{,i}} \right) = K \quad K \quad ,$$
 (1)

 $R_{,i}$ – i-

, ($^2\cdot^\circ$)/ ; $A_{,i}-$ V - , $^3;$

K – (5.3);

$$K = \frac{1}{A} \sum_{i} \left(n_{t,i} \frac{A_{,i}}{R_{,i}} \right); \tag{.2}$$

K – , $^{-1}$,

$$K = \frac{A}{V}; \tag{3}$$

A – (

, . (.1)

.2

 $k = \frac{1}{V} \left[\sum \left(n_{t,i} \frac{A_{,i}}{R_{,i}} \right) + \sum n_{t,j} L_j \Psi_j + \sum n_{t,k} N_k \chi_k \right], \tag{.4}$

 $R_{
m o}$, j, k- ; j-

 N_k – k-

.3

1 2 3 ;); .1.

.1

$n_{t,i}$	$A_{,i}$, 2	$R_{i}, (^{2} \cdot ^{\circ})/$	$n_{t,i}A_{,i}/R_{,i}$, /°	%
_	_	_		100

.4 5.5 (

	, ρ
1	0,5
2 3	0,65
3	0,9
4	0,7
5	0,6
6	0,65
7	0,7
8	0,6
9	0,45
-	0,7
11	0,3
12	0,8
13 ,	0,6
14 » ,	0,45
15	0,9
16 ,	0,45
17 -	0,8
18 » ,	0,6
19	0,65
20	0,7
-	0,7
	0,3
23 , -	0,6
24 » ,	0,4

	()		
.1	. , , , , , , , , , , , , , , , , , , ,		,
.2 . , 3 –	.1.	, 2-	,
	,	,	
.3	. 1 /(·°). , .		
		. ()

.1 –

	, R . , (².∘)/				
12	16	20			
0,34	0,35	0,35			
0,36	0,37	0,37			
0,59	0,65	0,64			
0,76	0,81	0,79			
0,86	0,84	0,82			
10 10	14 14	18 18			
0,46	0,5	0,53			
0,64	0,78	0,9			
0,78	0,95	1,05			
0,82	1,06	1,27			
1,1	1,4	1,55			
1,73	1,71	1,67			

.1

1 2 ,

	()	()
.1		
	:	·
	;	;
;	;	
.2	;	
.2 .2.1		
.2.2 .2.3		(.3).
.2.4 .2.5 .2.6	(.4). . 5	(.5).
.2.7	(.6).	
.2.8	. 7 (.6).	
.2.9	(.7).	
.2.10	(.8).	
	.3, .4.	,

$$\delta_{y} = \left(\frac{1}{\frac{1}{R_{o}} - \sum l_{j} \Psi_{j} - \sum n_{k} \chi_{k}} - \frac{\delta}{\lambda} - \frac{1}{\alpha} - \frac{1}{\alpha}\right) \lambda_{y}, \qquad (.1)$$

$$R_{
m o}$$
 - , ($^2\cdot$ $^{\circ}$)/ ,

$$V = \sqrt{\frac{K(K - K)V^2 + 0.08h(t - t)}{\sum_{i} \xi_i}},$$
 (.2)

K, K –

20.13330; , /;

20.13330;

 $\sum_{i} \xi_{i}$ –

$$V = \sqrt{\frac{0.08h(t - t)}{\sum_{i} \xi_{i}}},$$
(.2)
(.3)

$$t = t_0 - (t_0 - t) \frac{x_0}{h} \left[1 - xp \left(-\frac{h}{x_0} \right) \right], \tag{.4}$$

$$t_0 = \frac{\frac{t}{R} + \frac{t}{R}}{\frac{1}{R} + \frac{1}{R}} - , \circ ; \qquad (.5)$$

```
x_0 = \frac{c \ V \ \delta \ \rho}{\frac{1}{R} + \frac{1}{R}} - 
                                                                                                                           ( .6)
                                       t_0
                                                         (\tilde{0}2,7)
      =1005, \quad ; \\ =1005, \quad /(\quad \cdot^{\circ} \quad ) \ -
\rho = 353/(273+t)
    R = 1/\alpha + 1/\alpha + R -
                                                                    , 2.0 / ;
                                                                                                               , 2.0 / .
                            R –
                                            R
       .3,
                                                                                                        .7 (
                                                                                  20 %
                         .3).
                                      α
                   \alpha = \alpha + 2\alpha.
                             \alpha = 7.34 (V)^{0.656} + 3.78^{-1.91V}.
                                                                                                                           (.7)
                                       \alpha = \frac{m}{\frac{1}{1} + \frac{1}{2} - \frac{1}{0}},
                                                                                                                           (8.)
                                            , /( <sup>2</sup>· <sup>4</sup>), 5,77;
, /( <sup>2</sup>· <sup>4</sup>), 4,4
, 0,5
       0 - 
  1, 2-
      m –
                                       m = 0.04 \left( \frac{273 + t}{100} \right)^3.
                                                                                                                           ( .9)
                                       t + 1.
                                  ( .4)
                                                                                                          ( .2)
                                                                                                                           (.3)
                                                                    α,
                    R, (.4)
```

50.13330.2012 0 / . 5 %. $\boldsymbol{\alpha}$. .5). Δw -10. /(· · ²) .6 $e = e_1 - (e_1 - e) \operatorname{xp}\left(-\frac{h}{x_1}\right),$ (.10)

 $x_1 = 22100 \frac{V \delta \gamma R}{kR + 1} -$ (Õ 2,7)

	κ									
D	0,005	0,01	0,015	0,02	0,03	0,04	0,06	0,08	0,1	0,12
0,02	3,96	1,61	0,62							
0,04	8,16	4	2,5	1,64	0,63					
0,06		6,17	4,05	2,92	1,66	0,92				
0,08	16,7		5,54	4,1	2,55	1,68	0,65			
0,1		10,5		5,24	3,39	2,38	1,22	0,51		
0,12	25,6		8,52		4,19	3,03	1,73	0,96	0,42	
0,14		15,1		7,54		3,67	2,22	1,39	0,81	
0,16	34,9		11,6		5,8		2,69	1,79	1,17	0,7
0,18		19,8		9,92		4,92		2,17	1,51	1,02
0,2	44,6		14,9		7,43		3,61		1,84	1,32

D

$$D = \frac{E - e}{e - e},\tag{12}$$

, .

$$\kappa = \frac{R}{R_0},\tag{.13}$$

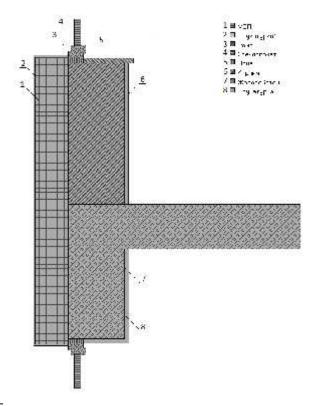
R - , $^2\cdot$ · / ,

$$R = R + \frac{1}{\frac{1}{R} + \frac{28573}{1 + \frac{t}{273}} \cdot \frac{\delta}{h} \cdot V}$$
 (.14)

7

()

			,	$R_{ m vp},$
1			1,3	0,016
2			6	0,3
3	()	10	0,12
4 -			10	0,11
5 ,			12,5	0,05
6			2	0,3
7 ,			4	0,48
8			_	0,64
9			_	0,48
10			2	0,60
11	-		1	0,64
			_	
12 ,			2	1,1
13			0,4	0,33
14			0,16	7,3
15			1,5	1,1
16			1,9	0,4
17			3	0,15

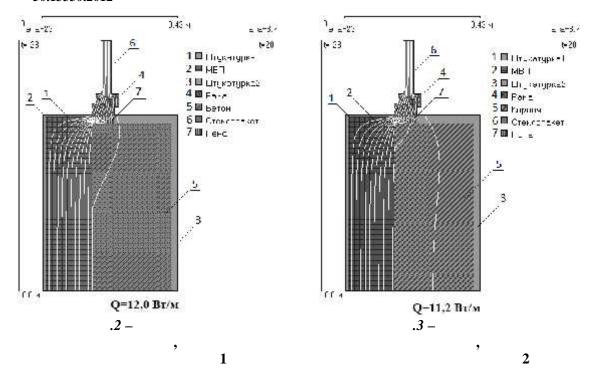

()

.1 ,

· 250 ().

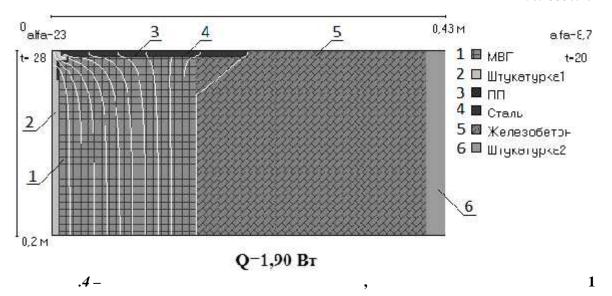
) .1.

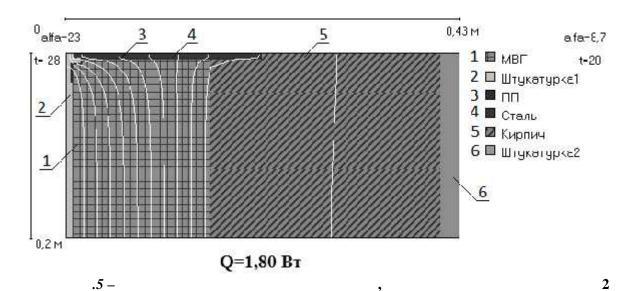
δ,	λ , /(\cdot °)
20	0,93
250 250	0,81
250	0,81 2,04
150	0,045
6	_



.1 –

```
50.13330.2012
         .2
                                                                                                           1;
                                                  2;
                                                                                                             1;
                                                                                                             2;
                                                              1;
         .3
                                                : 2400×2000
                                                                       - 80 , 1200×2000
                                                                              611^{-2}.
1200×1200
                   -24
                                                                                                                R
              : A = 2740 - 611 = 2129<sup>2</sup>;
                822 .
A_1 = 822(0, 2+0, 4) = 493
                                             a_1 = \frac{493}{2129} = 0,232;
                                                                               : A_2 = 2129 - 493 = 1636<sup>2</sup>.
a_2 = \frac{1636}{2129} = 0,768;
                       : L_1 = 2,4 \cdot 80 + 1,2 \cdot 80 + 1,2 \cdot 24 = 317.
                                                                l_1 = \frac{317}{2129} = 0.149 <sup>-1</sup>;
```


 $l_2 = \frac{1014}{2129} = 0,476$ ⁻¹;


: $L_2 = (2,4+2\cdot 2,0)\cdot 80 + (1,2+2\cdot 2,0)\cdot 80 + (1,2+2\cdot 1,2)\cdot 24 = 1014$.

.2.

	2)	1	$Q_{1,1} = 7,0$ /	$Q_1^L = 12,0$	$\Psi_1 = 0,104$	$l_1 = 0,149$ / ²
(.2)			/(² .°)	/(·°)	
	2)	2	$Q_{2,1} = 6,7$ /	$Q_2^L = 11, 2$ /	$\Psi_2 = 0,094$	$l_2 = 0,476$ / ²
(.3)			-	/(·°)	
		1	$\tilde{Q}_1 = 1,65$	$Q_1 = 1,9$	$_{1}$ = 0,0052 /°	$n_1 = 1,85$ / ²
(.4)					
	~`	2	$\tilde{Q}_1 = 1,57$	$Q_1 = 1,8$	$_2$ = 0,0048 /°	$n_2 = 6,15$ / ²
(.5)					

,

.5 .3. .3

			,	,
				%
1	$a_1 = 0,232$ ² / ²	$U_1 = 0,275 /(^2 \cdot ^\circ)$	$U_1 a_1 = 0.0638$ /($^2 \cdot ^{\circ}$)	17,5
2	$a_2 = 0.768$ ² / ²	$U_2 = 0.262 /(^2 \cdot ^\circ)$	$U_2 a_2 = 0.201$ /($^2 \cdot ^{\circ}$)	55,2
1	$l_1 = 0,149$ / ²	₁ = 0,104 /(·°)	₁ l₁ =0,0155 /(²·°)	4,26
2	$l_2 = 0,476$ / ²	₂ =0,094 /(·°)	2 l2 =0,0447 /(² ·°)	12,3
1	$n_1 = 1,85 \ 1/^{-2}$	₁ = 0,0052 /°	$_{1}n_{1}$ =0,00962 /($^{2}\cdot$ $^{\circ}$)	2,64
2	$n_2 = 6,15 \ 1/^{-2}$	2 = 0,0048 /°	2 n2 =0,0295 /(² ·°)	8,10
			$1/R = 0.364 /(^{2} \cdot ^{\circ})$	100

$$R = \frac{1}{0,0638+0,201+0,0155+0,0447+0,00962+0,0295} = \frac{1}{0,364} = 2,75 \quad ^{2} \cdot ^{\circ} /$$

$$;$$

$$r = \frac{0,201+0,0638}{0,364} = 0,73.$$

.1 131.13330 (5.2) $=(t - t) \cdot z = 23,1 \cdot 216 = 4990 \circ .$, (5.3), $n = \frac{t - t}{t - t} = \frac{18 - (-3,1)}{20 - (-3,1)} = 0,913.$ (5.3), $t = 8^{\circ}$. $n = \frac{t - t}{t - t} = \frac{20 - 8}{20 - (-3,1)} = 0,519$. .2 .2.1 $R_{1}=3,16 \ (^{2}\cdot^{\circ})/$. $A_{1}=3406^{2};$ $A_{1}=503^{2}.$.2.2 $R_{2}=3,34 (^{2}.^{\circ})/$. $A_{2}=608$: : $A_{2}=336$ 2 .

 $R_{3}=3,19 (^{2}.^{\circ})/$.

.2.3

$$A_{3}=1783 \stackrel{?}{2}; \qquad A_{4}=3,42 \stackrel{?}{(2,\circ)} \stackrel{?}{)}.$$

$$A_{4}=447 \stackrel{?}{2}; \qquad A_{4}=130 \stackrel{?}{2}.$$

$$2.5 \qquad R_{1}=5,55 \stackrel{?}{(2,\circ)} \stackrel{?}{)}. \qquad A_{1}=1296 \stackrel{?}{2}.$$

$$2.6 \qquad R_{2}=4,48 \stackrel{?}{(2,\circ)} \stackrel{?}{)}. \qquad A_{2}=339 \stackrel{?}{2}.$$

$$2.7 \qquad R_{1}=1,32 \stackrel{?}{(2,\circ)} \stackrel{?}{)}. \qquad A_{2}=339 \stackrel{?}{2}.$$

$$2.8 \qquad R_{2}=4,86 \stackrel{?}{(2,\circ)} \stackrel{?}{)}. \qquad A_{2}=85 \stackrel{?}{2}.$$

$$2.9 \qquad R_{2}=4,86 \stackrel{?}{(2,\circ)} \stackrel{?}{)}. \qquad A_{2}=85 \stackrel{?}{2}.$$

$$2.10 \qquad R_{3}=64 \stackrel{?}{2}. \qquad R_{2}=85 \stackrel{?}{2}.$$

$$2.10 \qquad R_{3}=64 \stackrel{?}{2}. \qquad R_{3}=64 \stackrel{?}{2}.$$

$$1.3 \qquad A_{3}=64 \stackrel{?}{2}. \qquad A_{3}=64 \stackrel{?}{2}.$$

$$1.3 \qquad A_{3}=64 \qquad A_{$$

.1.

$n_{t,i}$	$A_{,i}$, 2	$R_{,i}$, (2.0)/	$n_{t,i}A_{,i}/R_{,i}$,	%
1	3406	3,16	1078	16,9
0,913	503	3,10	145	2,3
1	608	3,34	182	2,8
0,913	336	3,34	92	1,4
1	1783	3,19	559	8,8
0,913	55	3,19	16	0,3
1	447	2.40	131	2,1
0,913	130	3,42	35	0,5
0,913	1296	5,55	213	3,3
0,913	339	4,48	69	1,1
0,519	1550	1,32	609	9,5
1	85	4,86	17	0,3
1	1383	0,56	2470	38,7
0,913	430	0,50	701	11,0
0,913	64	0,83	70	1,1
_	12415	_	6387	100

(5.5)
$$k = \frac{0.16 + \frac{10}{\sqrt{V}}}{0.00013 \cdot +0.61} = \frac{0.16 + \frac{10}{\sqrt{34229}}}{0.00013 \cdot 4990 + 0.61} = \frac{0.214}{1.259} = 0.17 \quad /(^{3} \cdot ^{\circ})$$

10 %.

. 0,65 (².°)/ .

, 1,88 (².°)/ .

$$k = \frac{1}{V} \sum_{i} \left(n_{t,i} \frac{A_{,i}}{R_{,i}} \right) = \frac{1}{34229} \left[\frac{3406}{3,16} + \frac{608}{3,34} + \frac{1783}{3,19} + \frac{447}{3,42} + \frac{1383}{0,65} + \frac{85}{4,86} + 0,519 \cdot \frac{1550}{1,88} + 0,913 \cdot \left(\frac{503}{3,16} + \frac{336}{3,34} + \frac{55}{3,19} + \frac{130}{3,42} + \frac{430}{0,65} + \frac{1296}{5,55} + \frac{339}{4,48} + \frac{64}{0,83} \right) \right] = \frac{5767}{34229} = 0,168.$$

$$.2.$$

50.13330.2012

.2

$n_{t,i}$	$A_{,i}$, 2	$R_{,i}$, $(^{2} \cdot ^{\circ})/$	$n_{t,i}A_{,i}/R_{,i}$,	%
1	3406		1078	18,7
0,913	503	3,16	145	2,5
1	608	3,34	182	3,2
0,913	336	3,34	92	1,6
1	1783	2.10	559	9,7
0,913	55	3,19	16	0,3
1	447	2.42	131	2,3
0,913	130	3,42	35	0,6
0,913	1296	5,55	213	3,7
0,913	339	4,48	69	1,2
0,519	1550	1,88	428	7,4
1	85	4,86	17	0,3
1	1383	0,65	2128	36,9
0,913	430	0,63	604	10,5
0,913	64	0,83	70	1,2
_	12415	_	5767	100

$$K = \frac{k}{K} = \frac{0.168}{0.36} = 0.467$$
 /(².°C).

```
.1
t = 20°.
                                                           =18 ^{\circ} .
     .2
                             V = 34229 <sup>3</sup>.
                                       : V_{1} = 24751^{-3};
                                            : V_2 = 6303^{-3};
                                                : V_{3} = 3175^{-3};
                              : A = 13080^{-2};
                           : A = 3793^{-2};
                                          : A = 1229^{-2};
                              : m = 332 ;
    1, 4
              -22,1;
    2, 3
              -28.1;
                                                =12415^{-2};
                      : A = 9145^{-2};
                                : 4839 <sup>2</sup>;
                                : 1405 <sup>2</sup>;
                                    : 1024 2;
                                 : 1296 <sup>2</sup>;
                                         : 339 <sup>2</sup>:
                               : 1550 <sup>2</sup>;
                               : 85 <sup>2</sup>.
                                                                     .2.
      142
```

50.13330.2012

```
......477
      ......49
           1813 <sup>2</sup>;
                            : 64 <sup>2</sup>;
                                      : K = 0.36;
                                      : f=0,20.
      .3
                   131.13330
                                               t = 28^{\circ};
t = 3,1^{\circ};
z = 216
                                              z = 216
                              t = 20°, \varphi = 55%.
           = (t - t) z = 23,1.216 = 4990 (^{\circ} \cdot ).
      .4
      .4.1
     k = 0.168 / (^{3} \cdot ^{\circ}).
      .4.2
( .2):
         = 0.28cn \beta_{\nu} \rho (1-k) = 0.28 \cdot 1 \cdot 0.439 \cdot 0.85 \cdot 1.31 \cdot 1 = 0.137 /( ^{3} \cdot ^{\circ} ).
                                                                               n,
                       .3:
     n = n_1 + n_2 + n_3 = 0.342 + 0.066 + 0.031 = 0.439^{-1}.
      .4.3
                                 .3:
      n_{1}
     n_1 = L /\beta \in V = 9960/(0.85 \text{ ñ} 34229) = 0.342^{-1}.
                       L_{v}
     L_1 = 30m = 30.332 = 9960^{-3}/;
     L = 2 = 0.35 \cdot 3 \cdot A = 0.35 \cdot 3 \cdot 3793 = 3983^{-3}.
```

 Δp –

2,3 .

$$\Delta p^1 = 0.28H^1(\gamma - \gamma) + 0.03\gamma (\nu)^2 = 0.28 \cdot 22.1(12.83 - 11.86) + 0.03 \cdot 12.83(3.8)^2 = 6.0 + 5.6 = 11.6$$

$$\Delta p^2 = 0.28H^2(\gamma - \gamma) + 0.03\gamma (\nu)^2 = 0.28 \cdot 28.1(12.83 - 11.86) + 0.03 \cdot 12.83(3.8)^2 = 7.6 + 5.6 = 13.2$$

.4.6

$$k = \frac{q - A}{V - (t - t)} = \frac{15, 6 \cdot 3793}{34229 \cdot 23, 1} = 0,075$$
 /(³·°).

q .5 . $17 / ^{2}$. 20^{-2} . $25 1 ^{-2}$

$$q_{\text{int}} = 17 + \frac{10 - 17}{45 - 20} (25, 1 - 20) = 15, 6$$
 / ².

.4.7

$$k = \frac{11,6Q}{(V)} = \frac{11,6\cdot1047981}{(34229\cdot4990)} = 0,071$$
 /(³.°).

$$Q$$
 , .8

$$Q = \tau_F k_F (A_{F1}I_{F1} + A_{F2}I_{F2} + A_{F3}I_{F3} + A_{F4}I_{F4}) + \tau_{scy} k_{scy} A_{scy} I_{hor} =$$

$$= 0.8 \cdot 0.74 \cdot (142 \cdot 612 + 366 \cdot 677 + 323 \cdot 677 + 103 \cdot 911 + 491911 + 286 \cdot 1285 + 477 \cdot 1285 + 67 \cdot 1462) - 1047081$$

 $+477 \cdot 1285 + 67 \cdot 1462) = 1047981$

$$q = [0,168+0,137-(0,075+0,071)0,8\cdot0,95]\cdot1,13=0,219$$
 /($^3\cdot^{\circ}$).

$$0,319 / (^{3} \cdot ^{\circ}) -$$

, «B+».

.4.9 Q , ·/ , (.10): Q = 0.024 $V = 0.024 \cdot 4990 \cdot 34229 \cdot 0.219 = 897739$ · / . Q , \cdot / , .4.10 (.11): Q = 0,024 V (k + k) = $= 0.024 \cdot 4990 \cdot 34229 (0.168 + 0.137) = 1250276 \cdot \cdot$.4.11 $q, \cdot /(^2 \cdot),$ (.9): $q = \frac{Q}{A} = \frac{897739}{13080} = 68,6$ \cdot /(2 ·). , (.1) $q = \lceil 0.187 + 0.137 - (0.075 + 0.071)0.8 \cdot 0.95 \rceil 1.13 = 0.241 \quad /(^{3} \cdot ^{\circ}).$ «B». .5 .1

(, ,)	
,	
,	2 7 2 9
	108
	332

2

1	t	°C	28
2	t	°C	3,1
3	z	/	216
4 -		° · /	4990
5	t	0	20
6	t	°C	
7	t	°C	8

8	A , 2	13080	
9	A , 2	3793	
10 ()	A , 2	1229	
11	V , 3	34229	
12	f	0,2	
13	K	0,36	
14			
,	A , 2	12415	
:			
	\boldsymbol{A}	9145	
	A_{-1}	3909	
	A_{2}	944	
	A_{3}	1838	
	A 3	1030	
	A_{-4}	577	
	11 4	37,	
	A	64	
()	A_{-1}	339	
, , , , , , , , , , , , , , , , , , ,	A_{2}	1296	
	A_{-1}	1550	
	A 2	85	
-	A_{1}	1383	
	$A_{.2}$	430	

	142 366	
	366	
	103	
	286	
	67	
	477	
	49	
	323	

4

16			R , $^2 \cdot ^{\circ}$ /			
	,	:	-			
			R_{-1}	3,15	3,16	
			R_{2}	3,15	3,34	
				,	,	
			R_{3}	3,15	3,19	
			3	3,13	3,17	
			R_{-4}	2.15	2.42	
			A 4	3,15	3,42	
			D.			
			R_{1}	0,52	0,65	
	-		$R_{.2}$	0,52	0,65	
			R	0,83	0,83	
	()	R_{-1}	4,7	4,48	
	`	,	R_{2}	4,7	5,55	
			R_{-1}	4,15	1,88	
			1	4,13	1,00	
			D		4.0.5	
			R 2	4,7	4,86	

17	<i>K</i> , /(² ·°C)	0,467
18	$n_{\rm a}$, $^{-1}$	0,439

50.13330.2012

19	$q_{ m int}$, $\qquad / \qquad ^2$	_	15,6
20	, / ·		
21	, /(·/)		
22	Ω , /(\cdot /)	_	

6

23	k , /(³ · °)	0,17	0,168
24	k , /(³ · °)		0,137
25	k , /(3.°)		0,075
26	k , /(³ ·°)		0,071

27		0,95
28 ,		0
29	k	0
30 ,		0,8
31	h	1,13

8

32	q , /(³ .°) /(² .°)	0,219
33	q , /(³ .°) /(² .°)	0,319
34		+
35		

36	q	$\begin{array}{ccc} \cdot /(&^3 \cdot &) \\ \cdot /(&^2 \cdot &) \end{array}$	68,6
37	Q	• /	897739
38	Q	• /	1250276

)

	,	R , $(^2 \cdot \cdot)/$
1 ()	100	20000
2 ()	140	21
3 -	500	6
4 ()	1,3	64
5	- 250	18
6	- 120	1
7 -	_	2
8 -	400	13
9	6	200
10	_	20
11 ,	20 – 25	0,1
12 ,	20 - 25	1,5
13	50	100
14 -	15 – 70	2,5
15 -	15 – 70	0,5
16 -	10	3,3
17	10	20
18 ()	100	2000
19 ()	100	200
20	50 – 100	80
21 ()	120	2000
22	50	2
23	1,5	
24	1,5	490
25 ()	3 – 4	2900
26 ()	100	14
27 -	15	373

			,	R , $(^2 \cdot \cdot)/$
28			15	142
29	-	(20	17
30	1	1000 / 3	250 – 400	53 – 80
31	, 1100 – 1300 / 3		250 – 450	390 – 590
	1			20 (² · ·)/ .
)),	(, ,
	3	,		,

()

/(·°)
8 9 10 11
52 0,059 0,23 0,28 0,05
44 0,050 0,23 0,28 0,05
43 0,049 0,25 0,30 0,05
42 0,048 0,26 0,30 0,05
41 0,047 0,27 0,32 0,05
40 0,046 0,29 0,34 0,05
38 0,044 0,31 0,38 0,05
38 0,044 0,34 0,41 0,05
40 0,046 0,38 0,45 0,05
40 0,046 0,38 0,45 0,05
35 0,040 0,27 0,32 0,05
34 0,039 0,30 0,35 0,05
30 0,031 0,30 0,31 0,005
31 0,032 0,35 0,36 0,005
42 0,05 0,62 0,70 0,05
36 0,041 0,49 0,55 0,05
31 0,04 0,37 0,44 0,05
51 0,071 0,75 1,02 0,23
45 0,064 0,56 0,77 0,23

		.1									
							ı				
		æ	•	0,							_
			° ~	(_			•
		0,	0, ()/	۰.	w,	0/0		,	24) c	·
			\forall	(。)/	,,,	70	/(·° ,	/(² ·°)	μ, /(··
											ή,
											•
	1	2	3	4	5	6	7	8	9	10	11
20		200	1,05	0,041	2	3	0,052	0,06	0,93	1,01	0,008
21		100	1,05	0,035	2	3	0,041	0,05	0,58	0,66	0,008
22	-	300	1,05	0,076	3	12	0,08	0,12	1,43	2,02	0,2
23		200	1,05	0,064	3	12	0,07	0,09	1,1	1,43	0,23
24		60 – 95	1,806	0,034	5	15	0,04	0,054	0,65	0,71	0,003
25		180	0,84	0,038	2	5	0,045	0,048	0,74	0,81	0,3
26		140 – 175	0,84	0,037	2	5	0,043	0,046	0,68	0,75	0,31
27	»	80 – 125	0,84	0,036	2	5	0,042	0,045	0,53	0,59	0,32
28	»	40 – 60	0,84	0,035	2	5	0,041	0,044	0,37	0,41	0,35
29	»	25 – 50	0,84	0,036	2	5	0,042	0,045	0,31	0,35	0,37
30		85	0,84	0,044	2	5	0,046	0,05	0,51	0,57	0,5
31		75	0,84	0,04	2	5	0,042	0,047	0,46	0,52	0,5
32	»	60	0,84	0,038	2	5	0,04	0,045	0,4	0,45	0,51
33	»	45	0,84	0,039	2	5	0,041	0,045	0,35	0,39	0,51
34	»	35	0,84	0,039	2	5	0,041	0,046	0,31	0,35	0,52
35	»	30	0,84	0,04	2	5	0,042	0,046	0,29	0,32	0,52
36	»	20	0,84	0,04	2	5	0,043	0,048	0,24	0,27	0,53
37	»	17	0,84	0,044	2	5	0,047	0,053	0,23	0,26	0,54
38	»	15	0,84	0,046	2	5	0,049	0,055	0,22	0,25	0,55
39	-	1000	2,3	0,15	10	12	0,23	0,29	6,75	7,7	0,12
	-										
40		800	2,3	0,13	10	12	0,19	0,23	5,49	6,13	0,12
41	»	600	2,3	0,11	10	12	0,13	0,16	3,93	4,43	0,13
42	»	400	2,3	0,08	10	12	0,11	0,13	2,95	3,26	0,19

		.1										
		0, / 3	0, (· ·)/	0, (· ·)/	w,	w, % /(.°		·°)	(24) s, 2.°)	μ, /(···)	
									^	,		
	1	2	3	4	5	6	7	8	9	10	11	
43	-	200	2,3	0,06	10	12	0,07	0,08	1,67	1,81	0,24	
44		500	2,3	0,095	10	15	0,15	0,19	3,86	4,50	0,11	
45		450	2,3	0,09	10	15	0,135	0,17	3,47	4,04	0,11	
46 »	>	400	2,3	0,08	10	15	0,13	0,16	3,21	3,70	0,26	
47		300	2,3	0,07	10	15	0,09	0,14	2,31	2,99	0,45	
48		200	2,3	0,06	10	15	0,07	0,09	1,67	1,96	0,49	
49		300	2,3	0,064	15	20	0,07	0,08	2,12	2,34	0,19	
50		200	2,3	0,052	15	20	0,06	0,064	1,6	1,71	0,49	
51		150	2,3	0,05	7	12	0,06	0,07	1,3	1,47	0,49	
52		1350	0,84	0,35	4	6	0,50	0,56	7,04	7,76	0,098	
53		1100	0,84	0,23	4	6	0,35	0,41	5,32	5,99	0,11	
54	(1050	0,84	0,15	4	6	0,34	0,36	5,12	5,48	0,075	
55		800	0,84	0,15	4	6	0,19	0,21	3,34	3,66	0,075	
56		300	1,68	0,087	1	2	0,09	0,099	1,84	1,95	0,04	
57		250	1,68	0,082	1	2	0,085	0,099	1,53	1,64	0,04	
58 »	,	225	1,68	0,079	1	2	0,082	0,094	1,39	1,47	0,04	
59 »	>	200	1,68	0,076	1	2	0,078	0,09	1,23	1,32	0,04	
60		600	0,84	0,14	2	3	0,17	0,19	2,62	2,83	0,23	
61		500	0,84	0,14	2	3	0,15	0,165	2,25	2,41	0,23	
62 »	·	450	0,84	0,13	2	3	0,14	0,155	2,06	2,22	0,235	

		\mathcal{A}											
		0, / 3	0, ()/	()	w,	w, %		·°)	24) s, /(² .°)		24) s, /(² ·°)		μ, /(···)
	1	2	3	4	5	6	7	8	9	10	, 11		
62	1					3							
63		400	0,84	0,12	2	٥	0,13	0,145	1,87	2,02	0,24		
64		350	0,84	0,115	2	3	0,125	0,14	1,72	1,86	0,245		
65	»	300	0,84	0,108	2	3	0,12	0,13	1,56	1,66	0,25		
66	»	250	0,84	0,099	2	3	0,11	0,12	1,22	1,3	0,26		
67	»	200	0,84	0,090	2	3	0,10	0,11	1,16	1,24	0,27		
68		700	0,84	0,16	2	4	0,18	0,21	2,91	3,29	0,21		
(9757)												
69		600	0,84	0,13	2	4	0,16	0,19	2,54	2,89	0,22		
70	»	500	0,84	0,12	2	4	0,15	0,175	2,25	2,54	0,22		
71	»	450	0,84	0,11	2	4	0,14	0,16	2,06	2,30	0,22		
72	»	400	0,84	0,11	2	4	0,13	0,15	1,87	2,10	0,23		
73		800	0,84	0,18	2	3	0,21	0,26	3,36	3,83	0,22		
(9757)												
74		700	0,84	0,16	2	3	0,19	0,23	2,99	3,37	0,23		
75	»	600	0,84	0,15	2	3	0,18	0,21	2,7	2,98	0,24		
76	»	500	0,84	0,14	2	3	0,16	0,19	2,32	2,59	0,25		
77	»	450	0,84	0,13	2	3	0,15	0,17	2,13	2,32	0,255		
78	»	400	0,84	0,122	2	3	0,14	0,16	1,94	2,12	0,26		
79		700	0,84	0,14	2	3	0,17	0,19	2,84	3,06	0,22		
(25820)												
80	/	600	0.84	0.13	2	3	0.16	0.18	2.54	2.76	0,235		
	»	500	0,84	0,12	2	3					0,24		
	»	400				3					0,245		
(80 81 82			0,84 0,84 0,84	0,13 0,12 0,10	2 2 2		0,16 0,14 0,13	0,18 0,15 0,14	2,54 2,17 1,87	2,76 2,30 1,98	0,24		

		.1									
				0,							
		3	, 0								
		0,	•.					-	(•
			°·)	· · ·)	w,	%	/(·° ')	24) s , $\stackrel{2}{\cdot}$ $\stackrel{\circ}{\cdot}$)	μ, /(···
									/()	'n,
						ı		T			
			-		_		_			10	,
0.2	1	2	3	4	5	6	7	8	9	10	11
83		500	0,84	0,09	1	2	0,1	0,11	1,79	1,92	0,26
(10832)										
84		400	0,84	0,076	1	2	0,087	0,095	1,5	1,6	0,3
85	»	350	0,84	0,07	1	2	0,081	0,085	1,35	1,42	0,3
86	»	300	0,84	0,064	1	2	0,076	0,08	0,99	1,04	0,34
87		200	0,84	0,065	1	3	0,08	0,095	1,01	1,16	0,23
(12065)										
88	12865)	150	0,84	0,060	1	3	0,074	0,098	0,84	1,02	0,26
89	»	100	0,84	0,055	1	3	0,074	0,098	0,66	0,75	0,20
90	<i>"</i>	1600	0,84	0,033	1	2	0,47	0,58	6,95	7,91	0,3
		1000	0,04	0,55	1	2	0,47	0,50	0,73	7,71	0,17
(8736)										
					-						
		T	I	ı		1	T	ı	I	1	
91		1800	0,84	0,64	7	10	0,87	0,99	11,38	12,79	0,09
92		1600	0,84	0,52	7	10	0,7	0,81	9,62	10,91	0,11
	»	1400	0,84	0,41	7	10	0,52	0,58	7,76	8,63	0,11
94	»	1200	0,84	0,32	7	10	0,41	0,47	6,38	7,2	0,12
95		1600	0,84	0,52	4	6	0,62	0,68	8,54	9,3	0,075
96		1400	0,84	0,42	4	6	0,49	0,54	7,1	7,76	0,083
96	»	1200	0,84	0,42	4	6	0,49	0,54	5,94	6,41	0,083
98	» »	1000	0,84	0,30	4	6	0,4	0,43	4,69	5,2	0,098
99	<i>"</i>	800	0,84	0,22	4	6	0,3	0,34	3,6	4,07	0,11
100	<u>"</u>	1600	0,84	0,15	7	10	0,64	0,20	9,2	10,14	0,075
100		1000	3,07	0,52	,		0,04	0,7	7,2	10,17	0,075
101		1400	0,84	0,41	7	10	0,52	0,58	7,76	8,63	0,083
102	»	1200	0,84	0,33	7	10	0,41	0,47	6,38	7,2	0,09
103	»	1000	0,84	0,24	7	10	0,29	0,35	4,9	5,67	0,098
104	»	800	0,84	0,20	7	10	0,23	0,29	3,9	4,61	0,11

	.1										
						1					
	m	•	0,								
	_	0,					_				
	0,	°·)/	°·)/	141	0/	/(.°)		(24) -		·	
)/	\forall	w,	70	/(\cdot°)	/() s , $\stackrel{2}{\cdot}$ $\stackrel{\circ}{\cdot}$)	μ, /(···	
										Ή,	
										,	
1	2	3	4	5	6	7	8	9	10	11	
			1.	1			I		II.		
105	1800	0,84	0,66	5	10	0,80	0,92	10,5	12,33	0,09	
106	1600	0,84	0,58	5	10	0,67	0,79	9,06	10,77	0,09	
107 »	1400	0,84	0,47	5	10	0,56	0,65	7,75	9,14	0,098	
108 »	1200	0,84	0,36	5	10	0,44	0,52	6,36	7,57	0,11	
109 »	1000	0,84	0,27	5	10	0,33	0,41	5,03	6,13	0,14	
110 »	800	0,84	0,21	5	10	0,24	0,31	3,83	4,77	0,19	
111 »	600	0,84	0,16	5	10	0,2	0,26	3,03	3,78	0,26	
112 »	500	0,84	0,14	5	10	0,17	0,23	2,55	3,25	0,3	
113	1200	0,84	0,41	4	8	0,52	0,58	6,77	7,72	0,075	
(V = 12%)											
114	1000	0,84	0,33	4	8	0,41	0,47	5,49	6,35	0,075	
115 »	800	0,84	0,23	4	8	0,29	0,35	4,13	4,9	0,075	
116	1000	0,84	0,28	9	13	0,35	0,41	5,57	6,43	0,15	
117	800	0,84	0,22	9	13	0,29	0,35	4,54	5,32	0,17	
118	700	0,84	0,135	3,5	6	0,145	0,155	2,70	2,94	0,145	
119	600	0,84	0,130	3,5	6	0,140	0,150	2,46	2,68	0,155	
120 »	500	0,84	0,120	3,5	6	0,130	0,140	2,16	2,36	0,165	
121 »	400	0,84	0,105	3,5	6	0,115	0,125	1,82	1,99	0,175	
122 »	300	0,84	0,095	3,5	6	0,105	0,110	1,51	1,62	0,195	
123	1400	0,84	0,49	4	7	0,56	0,64	7,59	8,6	0,098	
124	1200	0,84	0,36	4	7	0,44	0,5	6,23	7,04	0,11	
125 »	1000	0,84	0,27	4	7	0,33	0,38	4,92	5,6	0,14	
126	1200	0,84	0,29	10	15	0,44	0,5	6,96	8,01	0,15	
127	1000	0,84	0,22	10	15	0,33	0,38	5,5	6,38	0,19	
128 »	800	0,84	0,16	10	15	0,27	0,33	4,45	5,32	0,26	

	1											
	С	0,	0,									
		$\overline{}$				-						
	0,	٥.	°·)/	w,	%		,	(24) s, /(² ·°))/		
		\times)/	,,,	70	/(·°)	/(² ·°)	μ, /		
										n.		
1	2	3	4	5	6	7	8	9	10	11		
129	600	0,84	0,12	10	15	0,19	0,23	3,24	3,84	0,3		
130	1800	0,84	0,52	5	8	0,63	0,76	9,32	10,83	0,075		
131	1600	0,84	0,41	5	8	0,52	0,63	7,98	9,29	0,09		
132 »	1400	0,84	0,35	5	8	0,32	0,63	6,87	7,9	0,098		
133 »	1200	0,84	0,29	5	8	0,37	0,32	5,83	6,73	0,11		
134 »	1000	0,84	0,23	5	8	0,31	0,37	4,87	5,63	0,11		
135	1800	0,84	0,46	4	6	0,56	0,67	8,60	9,80	0,08		
	1000	0,01	0,10	•		0,50	0,07	0,00	,,,,,	0,00		
136	1600	0,84	0,37	4	6	0,46	0,55	7,35	8,37	0,085		
137 »	1400	0,84	0,31	4	6	0,38	0,46	6,25	7,16	0,09		
138 »	1200	0,84	0,26	4	6	0,32	0,39	5,31	6,10	0,10		
139 »	1000	0,84	0,21	4	6	0,27	0,33	4,45	5,12	0,11		
140	1800	0,84	0,58	5	8	0,7	0,81	9,82	11,18	0,083		
(
141	1600	0,84	0,47	5	8	0,58	0,64	8,43	9,37	0,09		
142 »	1400	0,84	0,47	5	8	0,58	0,58	7,46	8,34	0,098		
143 »	1200	0,84	0,36	5	8	0,32	0,58	6,57	7,31	0,036		
144	1800	0,84	0,7	5	8	0,45	0,93	10,82	11,98	0,075		
	1000	,,,,,	· · · · · ·			3,00	0,70	10,02	11,70	0,070		
145	1600	0,84	0,58	5	8	0,72	0,78	9,39	10,34	0,083		
146 »	1400	0,84	0,47	5	8	0,72	0,78	7,92	8,83	0,003		
147 »	1200	0,84	0,47	5	8	0,39	0,54	6,64	7,45	0,09		
148 »	1000	0,84	0,33	5	8	0,38	0,34	5,39	6,14	0,14		
110 "	1000	0,07	0,27	5	J	0,50	0,77	2,37	0,17	0,17		

	.1										
	8	0,	ó							$\overline{}$	
							_	,			
	0,	(。)/	· ·)	w,	%		·°)	24) s		· •	
)/	\leq	,,,	70	/(·°)	/($) s,$ $\stackrel{2.\circ}{\cdot}$	μ, /(···	
										ή	
										,	
1	2	3	4	5	6	7	8	9	10	11	
149	1400	0,84	0,47	5	8	0,52	0,58	7,46	8,34	0,09	
150	1200	0,84	0,35	5	8	0,41	0,47	6,14	6,95	0,11	
151 »	1000	0,84	0,24	5	8	0,3	0,35	4,79	5,48	0,12	
152	800	0,84	0,21	8	13	0,23	0,26	3,97	4,58	_	
153	600	0,84	0,14	8	13	0,16	0,17	2,87	3,21	0,15	
154 »	400	0,84	0,09	8	13	0,11	0,13	1,94	2,29	0,19	
155 »	300	0,84	0,08	8	13	0,09	0,11	1,52	1,83	0,23	
	1			II.	I	l.	1	1	1		
156	600	1,06	0,145	4	8	0,175	0,20	3,07	3,49	0,068	
(51263)											
157	500	1,06	0,125	4	8	0,14	0,16	2,5	2,85	0,075	
158 »	400	1,06	0,105	4	8	0,12	0,135	2,07	2,34	0,085	
159 »	350	1,06	0,095	4	8	0,11	0,12	1,85	2,06	0,09	
160 »	300	1,06	0,085	4	8	0,09	0,11	1,55	1,83	0,10	
161 »	250	1,06	0,075	4	8	0,085	0,09	1,38	1,51	0,11	
162 »	200	1,06	0,065	4	8	0,07	0,08	1,12	1,28	0,12	
163 »	150	1,06	0,055	4	8	0,057	0,06	0,87	0,96	0,135	
164	500	1,06	0,12	3,5	7	0,13	0,14	2,39	2,63	0,075	
165	400	1,06	0,09	3,5	7	0,10	0,11	1,87	1,98	0,08	
166 »	300	1,06	0,08	3,5	7	0,08	0,09	1,45	1,63	0,10	
167 »	250	1,06	0,07	3,5	7	0,07	0,08	1,24	1,40	0,11	
168 »	200	1,06	0,06	3,5	7	0,06	0,07	1,02	1,09	0,12	
169 -	1000	0,84	0,29	8	12	0,38	0,43	5,71	6,49	0,11	
170	800	0,84	0,21	8	12	0,33	0,37	4,92	5,63	0,14	
171 »	600	0,84	0,14	8	12	0,22	0,26	3,36	3,91	0,17	
172 »	400	0,84	0,11	8	12	0,14	0,15	2,19	2,42	0,23	

	.1											
	0, / 3	0, ()/	0, ()/	w,	w, %		w, % /(/(·°) 24 /() s, ² .°)	и, /(··)
										,		
1	2	3	4	5	6	7	8	9	10	11		
173 -	1000	0,84	0,31	12	18	0,48	0,55	6,83	7,98	0,13		
174	800	0,84	0,23	11	16	0,39	0,45	6,07	7,03	0,16		
175 »	600	0,84	0,15	11	16	0,28	0,34	5,15	6,11	0,18		
176 »	500	0,84	0,13	11	16	0,22	0,28	4,56	5,55	0,235		
177 -	1200	0,84	0,37	15	22	0,60	0,66	7,99	9,18	0,085		
178	1000	0,84	0,32	15	22	0,52	0,58	7,43	8,62	0,098		
179 »	800	0,84	0,23	15	22	0,41	0,47	6,61	7,60	0,12		
		II.										
180	1800	0,88	0,56	1	2	0,7	0,81	9,2	10,12	0,11		
181	1700	0,88	0,52	1,5	3	0,64	0,76	8,64	9,7	0,12		
182	1600	0,88	0,47	2	4	0,58	0,7	8,08	9,23	0,15		
183	1800	0,88	0,7	2	4	0,76	0,87	9,77	10,9	0,11		
184	1200	0,88	0,35	2	4	0,47	0,52	6,26	6,49	0,19		
185	1000	0,88	0,29	2	4	0,41	0,47	5,35	5,96	0,23		
186	1500	0,88	0,52	1,5	3	0,64	0,7	8,12	8,76	0,11		

	.1									
	0, / 3	0, // .°)	0, ()/	w,	%	/(·°)	(24 /() s, ² .°)	μ, /(···)
1		2	4	~		7	0	0	10	,
1	2	3	4	5	6	7	8	9	10	11
187 1400 / ³ ()	1600	0,88	0,47	1	2	0,58	0,64	7,91	8,48	0,14
188 1300 / ³ ()	1400	0,88	0,41	1	2	0,52	0,58	7,01	7,56	0,16
189 1000 / ³ ()	1200	0,88	0,35	1	2	0,47	0,52	6,16	6,62	0,17
190	1500	0,88	0,64	2	4	0,7	0,81	8,59	9,63	0,13
191 - -	1400	0,88	0,52	2	4	0,64	0,76	7,93	9,01	0,14
192	500	2,3	0,09	15	20	0,14	0,18	3,87	4,54	0,06
193	500	2,3	0,18	15	20	0,29	0,35	5,56	6,33	0,32
194	700	2,3	0,1	10	15	0,18	0,23	5,0	5,86	0,05
195	700	2,3	0,23	10	15	0,35	0,41	6,9	7,83	0,3
196	600	2,3	0,12	10	13	0,15	0,18	4,22	4,73	0,02

	0, / 3	,0 , /()/	()	w,	%	/(.°)	24) s, 2.°)	μ, /(···)
										,
1	2	3	4	5	6	7	8	9	10	11
197	1000	2,3	0,18	5	10	0,21	0,23	6,2	6,75	0,06
198	650	2,3	0,13	6	12	0,15	0,18	4,26	4,89	0,083
199	2500	0,84	1,69	2	3	1,92	2,04	17,98	18,95	0,03
200	2400	0,84	1,51	2	3	1,74	1,86	16,77	17,88	0,03
201	- 1800	0,84	0,58	2	4	0,76	0,93	9,6	11,09	0,09
202	1700	0,84	0,52	2	4	0,7	0,87	8,95	10,42	0,098
203	- 1600	0,84	0,47	2	4	0,7	0,81	8,69	9,76	0,12
204 ,	2800	0,88	3,49	0	0	3,49	3,49	25,04	25,04	0,008
205	2800	0,88	2,91	0	0	2,91	2,91	22,86	22,86	0,008
206	2000	0,88	0,93	2	3	1,16	1,28	12,77	13,7	0,06
207	1800	0,88	0,7	2	3	0,93	1,05	10,85	11,77	0,075
208 »	1600	0,88	0,58	2	3	0,73	0,81	9,06	9,75	0,09
209 »	1400	0,88	0,49	2	3	0,56	0,58	7,42	7,72	0,11
210	2000	0,88	0,76	3	5	0,93	1,05	11,68	12,92	0,075
211	1800	0,88	0,56	3	5	0,7	0,81	9,61	10,76	0,083
212 »	1600	0,88	0,41	3	5	0,52	0,64	7,81	9,02	0,09
213 »	1400	0,88	0,33	3	5	0,43	0,52	6,64	7,6	0,098
214 »	1200	0,88	0,27	3	5	0,35	0,41	5,55	6,25	0,11
215 »	1000	0,88	0,21	3	5	0,24	0,29	4,2	4,8	0,11

	.1									
	0, / 3	0, /()/	0, ()/	w,	%	/(·°)	24 /() s, ² .°)	μ, /(···)
										,
1	2	3	4	5	6	7	8	9	10	11
	,			,						
216	1800	0,84	0,35	2	3	0,47	0,52	7,55	8,12	0,03
217	1600	0,84	0,23	2	3	0,35	0,41	6,14	6,8	0,03
218	1400	1,68	0,27	0	0	0,27	0,27	6,8	6,8	0,008
219	1200	1,68	0,22	0	0	0,22	0,22	5,69	5,69	0,008
220 »	1000	1,68	0,17	0	0	0,17	0,17	4,56	4,56	0,008
221	2100	1,68	1,05	0	0	1,05	1,05	16,43	16,43	0,008
222 ,	600	1,68	0,17	0	0	0,17	0,17	3,53	3,53	_
223	26	2,0	0,048	1	2	0,049	0,050	0,44	0,44	0,001
224	30	2,0	0,049	1	2	0,050	0,050	0,47	0,48	0,001
225	1800	1,47	0,38	0	0	0,38	0,38	8,56	8,56	0,002
226	1600	1,47	0,33	0	0	0,33	0,33	7,52	7,52	0,002
227	1800	1,47	0,35	0	0	0,35	0,35	8,22	8,22	0,002
228	1600	1,47	0,29	0	0	0,29	0,29	7,05	7,05	0,002
229 »	1400	1,47	0,2	0	0	0,23	0,23	5,87	5,87	0,002
230	7850	0,482	58	0	0	58	58	126,5	126,5	0
231	7200	0,482	50	0	0	50	50	112,5	112,5	0
232	2600	0,84	221	0	0	221	221	187,6	187,6	0
233	8500	0,42	407	0	0	407	407	326	326	0
234	2500	0,84	0,76	0	0	0,76	0,76	10,79	10,79	0

50.13330.2012

```
s = 0, 27\sqrt{\lambda\rho_0(c_0 + 0,0419w)}\,,
s = 0, 27\sqrt{\lambda\rho_0(c_0 + 0,0419w)}\,,
w, \%,
s = 0, 27\sqrt{\lambda\rho_0(c_0 + 0,0419w)}\,,
w, \%,
s = 0, 27\sqrt{\lambda\rho_0(c_0 + 0,0419w)}\,,
v, \%,
v, \%
```

69	7.1					91.120.10
		:		,	,	,
			,	,		,
			,	,	,	,
				,		

50.13330.2012

23-02-2003

« » . (495) 930-64-69; (495) 930-96-11; (495) 930-09-14

60×84 ¹ / ₈ .	100 .	14/13.
	«	»